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As S/N decreases below unity, detection of curvature quickly 
becomes impossible. 

For the data points plotted in Figure 1, x = pK^ and f(x) = 
log kr The latter was calculated from eq 7, using the parameters 
resulting from the least-squares fit for mechanism 2. Values of 
S/N computed in this way for the five plots shown in Figure 1 
range from 0.6 to 0.7, the mean S/N being 0.66. This is well below 
unity. One may conclude, therefore, that the predicted curvature 
of the plots is too gentle to be detected. 

A second fitting comment concerns solvation effects, or rather 
the number of adjustable parameters to be used. When the 
formation of a reactive encounter complex from the reagents needs 
to be treated as a separate prior equilibrium, Marcus4 and oth-
ers6,8d,9,iob j , a v e SUggested modifications of the basic theory which 
would recast eq 7 in the form: 

AG* = 7 0 + !6AG0 + (AG°)2/16M° - ( A G 0 2 / 1 6 M ' (27) 

There are now three adjustable parameters: y°, n°, and y!. The 
original 7 in eq 7 has been replaced by 7 0 and 11°: 7° gathers 
up all effects on reactivity that remain constant in the reaction 
series, while M0 gathers up all effects that vary as (AG0)2. Their 
values are different if certain physical effects, including solvation 
effects in the formation of reactive encounter complexes, become 

This paper continues the use of structure-energy relations for 
deducing the mechanism of the addition of alcohols to form­
aldehyde. The preceding paper1 (hereafter called part 1) examines 
the mechanism of general base catalysis, using a theory of re­
activity2 which applies when there is disparity of progress of two 
concerted reaction events. This theory, which develops Marcus 
rate-equilibrium theory3 so as to quantify the use of More 0 ' -
Ferrall diagrams,4 predicts diagnostically different structure-
energy relations for different reaction mechanisms. In the case 
of base catalysis, only one of the suggested mechanisms fits the 
data, and this mechanism agrees with that indicated by other 
methods.15,6 

(1) Grunwald, E. J. Am. Chem. Soc, preceding paper in this issue. 
(2) Grunwald, E. J. Am. Chem. Soc. 1985, 107, 125. 
(3) Marcus, R. A. J. Phys. Chem. 1968, 72, 891. 
(4) More O'Ferrall, R. A. J. Chem. Soc. B 1970, 274. 
(5) Funderburk, L. H.; Aldwin, L.; Jencks, W. P. / . Am. Chem. Soc. 1978, 

100, 5444. 
(6) Palmer, J. L.; Jencks, W. P. / . Am. Chem. Soc. 1980, 102, 6472. 

important, /i' corresponds to n in eq 7. 
The fit of the three-parameter eq 27 represents an improvement 

over that of eq 7. Using the same 25 data sets as before (Table 
II), least-squares results are: 7 0 = 12.66 ± 0.2 kcal; n0 = 21.8 
± 2.8 kcal; p! = 3.66 ± 0.8 kcal. a(fit) = 0.137 kcal, which 
compares favorably with that of eq 7, 0.188 kcal, and is consistent 
with the 0.14-kcal experimental error of AG+*. Because the formal 
change from (7) to (27) has a physical basis, the improvement 
of fit is not trivially due merely to the introduction of an additional 
parameter. 

Despite this good result, I prefer eq 7 for the investigation of 
reaction mechanism. The physical basis of eq 7 is of broad scope, 
and although there are soft spots, the inherent approximations 
are understood. Using eq 7, transition-state coordinates can be 
simply deduced. Assuming that eq 2 represents the dominant 
mechanism, the fit of eq 7 is really quite good, and one ought not 
add to the pitfalls in deducing reaction mechanism by needlessly 
increasing the number of adjustable parameters. 

Registry No. CH2O, 50-00-0; CH3CH2OH, 64-17-5; CH3OCH2C-
H2OH, 109-86-4; ClCH2CH2OH, 107-07-3; Cl2CHCH2OH, 598-38-9; 
CF3CH2OH, 75-89-8; CH3COO", 71-50-1; ClCH2CH2COO-, 5102-76-1; 
CH3OCH2COO-, 20758-58-1; C1CH2C00", 14526-03-5; NCCH2COO-, 
23297-32-7. 

I shall now examine the mechanism of general acid catalysis. 
The specific reaction series is shown symbolically in eq 1, where 
R and R' are variable substituents. 

R'CH2COOH + RCH2OH + 

H 2 C=O ;=± RCH2OCH2OH + R'CH2COOH (1) 

I shall use a 5 X 5 matrix of data: five primary alcohols and five 
carboxylic acid catalysts, as reported by Funderburk, Aldwin, and 
Jencks (FAJ).5 The experimental rate constants afcr apply to the 
reverse reaction in eq 1, which was caused to go to completion 
by trapping the formaldehyde. 

Bronsted plots of log *kr vs. pKa of the acid catalyst are shown 
in Figure 1. Plots of log aA:r vs. pATa of the alcohol are shown in 
Figure 2. These figures also show best-fitting straight lines 
obtained by least squares. Most of the lines reproduce the data 
adequately. However, as pointed out before,1 there is no statistical 
necessity for the real relationships to be straight lines. They may 
be gentle curves. 
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Abstract: Previous theory of structure-energy relations is extended to mechanisms with three concerted reaction events. Data 
for 25 reactions (five alcohols, five acid catalysts) are examined on the basis of four different mechanisms. Only one of the 
mechanisms fits well. It involves concerted C-O bond formation, proton donation by the acid catalyst, and proton acceptance 
by a water molecule, according to H2O + HOCH2R + H2C=O + HOOCCH2R' — H2OH+ + RCH2OCH2OH + -0OCCH2R'. 
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pK0 of R1CH2COOH 

Figure 1. Bronsted plots for acid-catalyzed cleavage of RCH2OCH2OH 
in water vs. p#a of the acid catalyst. (Top to bottom) C, R substituent, 
slope of straight line: 7.5, CF3, -0.352; 6.5, Cl2CH, -0.421; 5.5, ClCH2, 
-0.422; 5.0, CH3OCH2, -0.400; 4.0, CH3, -0.251, (data from ref 5). 
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Figure 2. Logarithmic plot of rate constant for acid-catalyzed cleavage 
of RCH2OCH2OH in water vs. pK^ of the alcohol produced. (Top to 
bottom) Acid R' substituent, slope of straight line: CN, 0.269; Cl, 0.260; 
CH3O, 0.319; ClCH2, 0.320; H, 0.319 (data from ref 5). 

It will turn out that suggested reaction mechanisms involving 
two concerted reaction events do not fit the data well. I shall 
therefore extend the diagnostic theory to mechanisms involving 
three concerted reaction events. When energy depends on three 

RCH2OH + H2C=OH+ + B" 

(0,1) 

" (1/2,1) 

Grunwald 

RCH2OH+CH2OH + B" 

(1,1) 

(1,1/2) f 

P 

(1/2,0) 

(0,0) o - C bond formation C ° ) 

RCH2OH + H2C = O + HB RCH2OH+CH2O " + HB 

Figure 3. Progress square with corner species for the rate-determining 
step (2a) of the acid-catalyzed mechanism 2. 

progress variables, the full coordinate space becomes four-di­
mensional, and graphical representation by More O'Ferrall dia­
grams becomes inconvenient. On the other hand, analytical 
representation by the theoretical equations remains convenient. 

Mechanisms with Two Progress Variables. FAJ5 considered 
the two kinetically equivalent mechanisms 2 and 3. They favor 
mechanism 2. 

RCH2OH + H 2 C=O + HB ^=Z RCH2-OH+-CH2OH + B" 

(2a) 

RCH2-OH+-CH2OH + B" ; = ± RCH2OCH2OH + HB (2b) 

fW 

CH 2 =O + H B ; CH2= O H + + B- (3a) 

B" + HOCH2R + C H 2 = O H + ^=Z HB + RCH2OCH2OH 

(3b) 

The concerted reaction events in both slow steps 2a and 3b are 
proton transfer and C - O bond formation. For step 2a this is 
shown by a More O'Ferrall diagram in Figure 3. The process 
i —• h in that figure is the disparity reaction associated with (2a) 
and is shown explicitly in eq disp. 2a. The disparity reaction for 
step 3b is shown in eq disp. 3b. 

RCH2-OH+-CH2O- + H B - * RCH2OH + H 2 C=OH + + B-
(disp. 2a) 

B- + RCH2-OH+-CH2OH — HB + RCH2O" + C H 2 = O H + 

(disp. 3b) 

The theoretical structure-energy relation for two progress 
variables is eq 7 of part I.1 Let a/tr = (kBT/h) exp(-AGt*/RT). 
The required free-energy quantities then are related to auxiliary 
free-energy quantities defined and tabulated in part 1 (eq 10-16 
and Table I) as follows.1 For step 2a: 

AG0 = AGhemi - AGIH + AGHB 

AG': 

(2c) 

(2d) 

(2e) 

(3c) 

-AGhemi - AGK - AGZ + AGHB 

AG+* = AGr* + AGhemi 

For step 3b: 

AG0 = AGhemi + AGK - AGHB 

AG' = -AGHB - AGK + AGH0R - AGhemi + AGIH (3d) 

AG+* = AGr* + AGhemi + AGK - AGHB (3e) 

For both mechanisms the fit to eq 7 of part 1 is poor; <r(fit) is 
at least twice o-(data). For mechanism 2, o-(fit) = 0.56 kcal and 
<r(data) = 0.28 kcal. For mechanism 3, <r(fit) = 0.46 kcal and 
er(data) = 0.21 kcal. Apparently neither mechanism represents 
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Figure 4. Progress cube in (u,v,w) coordinates with labels for corner 
species. 

the dominant process of the acid-catalyzed reaction. 
I believe these negative results are significant, for two reasons. 

First, the method used here is identical with that which fits the 
complicated facts for the otherwise identical base-catalyzed re­
action. Second, from a chemical point of view, the product in (2a), 
RCH2-OH+-CH2OH, is a stronger acid than H3O+. Thus, if the 
process shown in (2a) were coupled to proton transfer to solvent 
water as in (4), the free energy of activation would be reduced. 

H5O + HB 
AS+ 

H3O+ + RCHoOCHpOH + B" (4) 

By contrast, the species RCH2OCH2O" produced in the base-
catalyzed mechanism is a weaker base than OH", and coupling 
of its formation to proton transfer from solvent water is less likely. 
(Data are given in Table I of part I.)1 

Since reaction 4 involves three concerted reaction events (labeled 
u, v, and w), I shall first present the basic physical theory, and 
then apply it to show that the mechanism suggested in (4) fits 
the data well. 

Three Progress Variables. The progress diagram, Figure 4, is 
now a unit cube. The three progress variables are denoted by u, 
v, and w. The point representing the reagents is (0,0,0); that 
representing the products is (1,1,1). The other corner points 
represent the six intermediates that can be formed when the three 
reaction events occur stepwise rather than simultaneously. 

In order to apply Marcus rate-equilibrium theory, it is necessary 
to rotate, translate, and renormalize this coordinate system, be­
cause one of the new coordinate axes must join reagents directly 
to products and thus measure mean progress of the reaction 
events.2 The other two coordinates may then be chosen so as to 
measure disparity of progress of the reaction events. If possible, 
their end points should represent states of known or predictable 
energy, i.e., be corner points of the (u,v,w) cube. 

I find it convenient to rotate the (u,v,w) system by the following 
values of the Euler angles:7 f = cos-1 (1/V3) = 54° 44'; d = 45°; 
4> = 0°. Renormalization and translation of the origin so that 
the new axes intersect at '/2,' :/'2,'/2 then leads to the following 
new coordinates: 

x = (u + v + w)/3 (5a) 

y» = 1A+1Ai-U + [v+ w]/2) (5b) 

Su=Vi+ Vii-v + W) = >/2 + >/2([-u + w] - [-« + V]) (5c) 

According to (5a), x measures mean progress. According to (5b), 
yu~

l Ii measures the disparity, relative to u, of the mean progress 
of v and w. According to (5c), su - ' / 2 measures the difference 
between the disparities of progress, relative to u, of w and v. 

In eq 5, u is the pivot variable relative to which disparities of 
progress are measured. By appropriate rotations, other sets of 
variables, (6) and (7), can be obtained in which v are w are pivot 
variables. 

(6a, 7a) 

(6b) 

x = (u + v + w)/3 

Vc = A + lA(-v + [u + w] / 2 ) 

-̂ = A + 1Ai-U + w) 

yv = 1A + 1M-* + [u+ v]/2) 

S^ = 1A+ Ai-u + v) 

(6c) 

(7b) 

(7c) 

(7) See, for example, Goldstein, H. 
Wesley: Reading, MA, 1950. 

'Classical Mechanics"; Addison-

Returning to coordinates 5 with pivot variable u, the free energy 
G is given by eq 8, which is a fairly obvious extension of previous 
theory2 from two to three progress variables. Aspects of its de­
rivation will be considered in a later section. 

G = c + 4 7x(l -x) + AG0X - 4 / ^ ( 1 - yu) + AG>U -
An'usu{\-su) + AG"usu (8) 

As before, c is a constant depending on the zero point of the 
free-energy scale. The intrinsic barrier 7 and the intrinsic wells 
Mu and n'u are characteristic constants for the reaction series or 
family. 

AG°, AG'„, and AG"U denote the free-energy changes for full 
displacements along x, yu, and su, respectively. They are specific 
for each reaction. To define the processes to which they apply, 
I shall let brackets denote coordinates in the [x,>>u,.ru] system and 
parentheses in the iu,v,w) system. The reagents are located at 
[0,V2,V2] and the products at [1,72,72]- These points correspond 
to (0,0,0) and (1,1,1), respectively, in iu,v,w). Full displacement 
along the x axis from reagents to products thus defines AG0 as 
the free-energy change for the process, (0,0,0) —• (1,1,1). 

The end points of the yu axis are at [72,0,72] and ['/2,1,72] 
in [x,yu,su], and correspond to (1,0,0) and (0,1,1) in (u,v,w). Full 
displacement along the yu axis thus defines AG'U as the free-energy 
change for the process (1,0,0) -* (0,1,1). 

The end points of the su axis are [72,72,0] and [72>72,1] in 
[x,yu,su], and correspond to (72,1,0) and (72,0,1) in iu,v,w). In 
contrast to the end points of x and yu, which correspond to corner 
species in iu,v,w) (see Figure 4) and whose free energies thus are 
known or predictable, the end points of su are not corner species. 
They lie at the corners of a square plane normal to the u axis at 
u = x /2. Their molecular configurations and hence their free 
energies are less predictable than those of corner species. For­
tunately, within the framework of the present theory, one can relate 
their free energies to the free energy of corner species in (w,f,w). 
One predicts, by straightforward substitution of (5) in (8), that 
for any change («,1,0) — (w,0,l), 0 < u < 1, AG is constant and 
simply equal to AG"U, independent of u. Thus, if eq 8 is at least 
approximately valid, one may simulate the displacement (72,1,0) 
—- (72,0,1) along su by the process shown in (9), involves corner 
species. 

y2(o,i,o) + y2(i,i,o) -* y2(o,o,i) + y2(i,o,i) A C , (9) 
When v or w are pivot variables, equations and processes for 

the free-energy quantities are obtained analogously. Let p denote 
the chosen pivot variable, which may be u, v, or w. Then G is 
expressed by eq 10, where the intrinsic constants and specific 
G = c + 4 7x(l -x) + AG°x - 4 ^ , ( 1 - yp) + AC1J1, -

4n'„sp{\ - Sp) + A G " ^ (10) 

free-energy changes are like those in (8) but depend on the choice 
of pivot variable. Practical equations and related processes are 
given in Table I. 



4718 J. Am. Chem. Soc, Vol. 107, No. 16, 1985 

Table I. Equations and Processes for Three Progress Variables 
pivot variable [process in (u,v,w)] 

W AG0 [(0,0,0) — (1,1,1)] 
u AG'„ [(1,0,0)-(0,1,I)] 

AG"„ = V2(AG;. - AG'.) 
[V2(0,1,0) + '/2(U1O) - '/2(1,0,I) + '/2(0,0,1)] 

u* = x* - Ay* jl + 2/3 
v* = x* + Iy*/3- su* + 1/6 
w* = x* + 2vu'/3 + su* - 5/6 

v AG'„ [(0,1,0) - (1,0,1)] 
AG"V = V2(AC1, - AG'„) 

'/2(1.1.O) + V2(IAO) - '/2(0,1,1) + V2(O1O1I)] 
u* = x* + ly'll - s* + 1/6 
v' = x* - 4yc73 + 2/3 
w* = x* + 2yv'/3 + sv* - 5/6 

w AC„ [(0,0,1)-(1,1,O)] 
AC^=V2(AC11-AG',,) 

['/2(1,0,0) + V2(IAl) - V2(CU) + '/2(0,1,O)] 
u* = JC* + 2yw*/3-sK* + 1/6 
v* = x* + 2yw*/3 + sw' - 5/6 
w* = x* - 4yw*/3 + 2/3 

Table II. Test" of Mechanism 4 
AG+' = AGr' + Afl*emi + RT In [HOH] 
AG0 = AGhemi + RT In [HOH] + AGHB 

Pivot u: (1,0,0) —(0,1,1) 
H2OH+ + RCH2O" + H2C=O + H B - H2O + 

RCH2-OH+-CH2OH + B" 
AC1 = AGHB - RT In [HOH] - AGIH - AGH0R + AGhemi 

7 = 18.49 ± 0.11; Mu = 24.8 ± 6.9; M'„ = 2.75 ± 0.46 
<r(fit) = 0.153; cr(data) = 0.250 kcal 

Pivot v. (0,1,0) — (1,0,1) 
H2O + RCH2-OH+-CH2O" + H B - H2OH+ + RCH2O" + 

H C=OH+ + B-

AC0 = AGHB + RT In [HOH] - AGZ + AGH0R - AGK - AGhcmi 

7 = 18.93 ± 0.15; n„ = 13.4 ± 1.7; ,»/„ = 269 
1/M'„ = 0.0037 ± 0.003; a(fit) = 0.138; a(data) = 0.245 kcal 

Pivot w: (0,0,1) — (1,1,0) 
H2O + RCH2OH + H2C=OH+ + B" — H2OH+ + 

RCH2OCH2O" + HB 
AC„ = -AGHB + RT In [HOH] + AG1 + AGK + AGhemi 

7 = 18.22 ± 0.20; nw = -6.4 ± 2.0; n'„ = 10.8 ± 1.1 
q(fit) = 0.146; g(data) = 0.250 kcal 

"Numerical data are given in kcal. AGr* + RTIn [HOH] = - RT 
In {*kJ[HOH]) + RT In (k^T/h). *kr is the rate constant reported by 
FAJ for the reverse reaction in (1). It is divided by [HOH] because in 
the forward reaction of mechanism 4, HOH is a reagent. 

Transition-state coordinates (11) are derived from (10) by 
finding the coordinates where G is a maximum. 

x* = '/2 + AG"/87 (Ha) 

y\ = Y2 - AG>p/Up (Hb) 

s*p = % - AG"p/Sn>„ ( l ie) 

Upon substituting in (10) we obtain the structure-energy rela­
tionship: 

AG* = G[x*y,s*] - G[o,y2,y2] = 
7 + ^2AG0 + ( A G ° ) 2 / 1 6 Y - (AG'p)2/16fv - ( A G " , ) 7 l 6 ^ 

(12) 

Test of Mechanism (4). The basic equation is (12); specific 
equations are listed in Table II. The required free-energy 
quantities were taken from part I.1 Acid-catalyzed rate constants 
were taken from FAJ.5 A 5 X 5 array of data was used, with the 
following substituents: R = CH3, CH3OCH2, ClCH2, Cl2CH, 
and CF3; R' = H, ClCH2, CH3O, Cl, and CN. As in part 1, 
standard error estimates were 0.14 kcal for AG+* and 0.4 kcal 
each for AG0, AG',, and AG",. 

The fit of the data to mechanism 4 can be tested by using either 
u, v, or w as pivot variable. Results of the least-squares fit for 

Grunwald 

each pivot are included in Table II. The fits are good: <r(fit) is 
0.14-0.15 kcal, well within the 0.25-kcal data error indicated by 
o-(data). Although the calculations with different pivots involve 
basically the same free-energy quantities, I believe that the fits 
are practically independent. The specific fitting equations are 
nonlinear and, as shown in Table I, utilize different combinations 
of AG;, AG'C, and AG'W. 

The test of mechanism 4 involves three adjustable parameters, 
while the previous tests of mechanism 2 and 3 involved only two. 
I therefore wish to show that the present test is significant and 
that the good fit is not merely due to the greater number of 
parameters. I shall show (a) that three-parameter equations for 
mechanisms with three progress variables are selective of mech­
anism, and (b) that in special cases involving three progress 
variables, equations with two parameters work well. 

Concerning (a), an alternative, formally acid-catalyzed 
mechanism with three progress variables is shown below: 

fast 

HB + HOH ; = : B" + HOH2
+ (13a) 

B" + HOCH2R + H 2 C=O + HOH2
+ z=± BH + 

RCH2OCH2OH + OH2 (13b) 

The rate-determining step (13b) was treated by the same theory 
as above. Although three parameters were used, the fit was poor. 
The fitting procedure converged only for two out of three pivots, 
and at convergence cr(fit) was >0.4 kcal, while <r(data) was <0.25 
kcal. 

Concerning (b), the data in Table II show that when the pivot 
is v, n'v is relatively large so that the term (AG"„)2/16/i'„ is rel­
atively negligible. Accordingly, when the test for mechanism 4 
was repeated using a two-parameter equation based on (12) but 
from which that term had been omitted, the fit remained quite 
good: cr(fit) = 0.153 kcal. The result shows that, given the right 
mechanism and an appropriate pivot, one can obtain good fit with 
only two parameters. 

Granting that mechanism 4 fits the rate constants for acid 
catalysis, one may 'ask whether this conclusion introduces in­
consistencies with other data. I shall address specifically two 
questions: (a) Why do the rate constants for base catalysis indicate 
a mechanism1 without participation by water as a reagent? (b) 
Why does one not observe a kinetic term for cooperative catalysis 
by both buffer acid and buffer base? 

In reaction 4, H2O acts as proton acceptor and HB as proton 
donor. This mechanism belongs to a class called "push-pull" by 
Swain and co-workers.8 The reaction thus may be written in more 
general form according to: 

-̂—~~-!̂— w 

A-H-HOCH2R + H2C=O + H - B -

A - H + RCH2OCH2OH + :B (14) 

Corner species in the {u,v,w) progress cube for reaction 14 can 
be derived by simple inspection. For instance, (0,1,0) = A: + 
RCH2-OH+-CH2O- + HB; (1,0,0) = A - H + RCH2O" + 
H 2 C=O + HB; etc. the theoretically required free-energy changes 
thus are readily derived. Moreover, since (4) and (14) belong 
to the same mechanistic family, their free-energy spaces are de­
scribed by the same intrinsic constants. That is to say, the values 
of 7, ixp, and \x'p listed in Table II for reaction 4 apply also to any 
reaction according to (14). It is therefore possible to use eq 12, 
in conjunction with specific equations similar to those in Table 
II, to predict rate constants. I have used this technique (with v 
as pivot variable) to answer the questions posed above. 

(a) Equation 14 predicts a kinetic term for general base catalysis 
if A: is identified with the general base, and HB and :B are taken 
to be HOH and OH", respectively. Rate constants for general 
base catalysis predicted in this way amount only to small fractions, 
0.0003 to 0.034, of the observed rate constants. The dominant 
part of the base-catalyzed reaction thus is predicted to proceed 

(8) (a) Swain, C. G.; Eddy, R. W. J. Am. Chem. Soc. 1948, 70, 2989. (b) 
Swain, C. G.; Brown, J. F. Ibid. 1952, 74, 2534, 2538, 2691. (c) Swain, C. 
G.; Kreevoy, M. M. Ibid. 1955, 77, 1122. (d) Swain, C. G.; Stivers, E. C; 
Reuwer, J. F.; Schaad, L. J. ibid. 1978, 80, 5885. 
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Table III. Consistency of Predictions with Different Pivots 

R" R'" pivot 

Table IV. Some Transition-State Coordinates (;<*, v*, w')° for the 
Reaction Series 

CH, CN 

(17.866)* 

(19.078)» 

CF3 

u 0.383 0.803 0.343 
D 0.379 0.757 0.392 
w 0.412 0.862 0.254 
mean 0.391 ± 0.01 0.807 ± 0.03 0.330 ± 0.04 

0.435 0.779 0.349 
v 0.408 0.734 0.417 
w 0.448 0.795 0.319 
mean 0.430 ± 0.01 0.769 ± 0.02 0.361 ± 0.03 

H u 0.493 0.749 0.354 
v 0.440 0.708 0.445 

(20.506)k w 0.488 0.720 0.388 
mean 0.474 ± 0.02 0.726 ± 0.01 0.396 ± 0.03 

"Substituent in RCH2OH or R'CH2COOH, respectively. 6AG+' 
(kcal). 

by a mechanism other than that shown in (14). This is consistent 
with deductions made in part I.1 Although not assisted by proton 
transfer from HOH, the dominant base-catalyzed reaction is faster 
than (14) because its product, RCH2OCH2O", is a weaker base 
than OH". (See data for AG1 in part 1, Table I.) There is no 
inconsistency. 

(b) In buffered solutions, eq 14 predicts a kinetic term in which 
HB represents the buffer acid and A: represents the conjugate 
buffer base B". The corresponding kinetic contribution to the 
reverse reaction (RCH2OCH2OH — RCH2OH + H 2 C=O) is 
a third-order term, km [RCH2OCH2OH] [HB] [B"]. Such kinetic 
terms are well known for the enolization of acetone.92 FAJ5 looked 
for such a term for the present reaction but could not find it. To 
test whether the predicted third-order reaction would be fast 
enough to be detected, I calculated km for each member of the 
reaction series and multiplied it by the maximum product of 
relevant experimental concentrations to obtain the maximum 
third-order rates predicted according to (14). These maximum 
rates were always less than 20% of the total rates, and mostly less 
than 10%. Considering that the kinetic analysis5 already involves 
five terms, an additional sixth term that amounts to less than 20% 
under all conditions probably cannot be detected. This is not 
because the experimental error is 20% (the actual error may be 
several times smaller) but because statistical covariance permits 
compensating changes to be made in the other fitted rate constants 
so that the third-order kinetic term may be omitted without ap­
preciable deterioration of the fit. Again, there is no inconsistency."1 

Thus, by the criteria of the present approach, eq 4 may, and indeed 
does, represent the dominant mechanism for the general acid 
catalyzed reaction. 

Transition-State Coordinates. Values of x*, y*p, and s*p [p = 
u,v,w] were calculated for reaction 4 from eq 11, and values of 
u*, v*, and w* were calculated using equations given in Table I. 
Since the statistical fits with different pivots are nearly inde­
pendent, agreement among the three sets of results would tend 
to confirm their validity. However, one must not be too finicky, 
for the following reason. The crux of the present theory is that 
any initial set of progress variables can be transformed, first into 
a set (u,v,w) and then into a set [*,)>,.?], such that G{x,y,s) is a 
quadratic function according to (10). If the transformed function 
fits only approximately rather than exactly, the error in AG* will 
be small, because G is at a maximum and the free-energy hy-
persurface is stationary at the transition state. On the other hand, 
and for the same reason, errors in u*, v*, and w* will be large. 

In fact, the precision of results based on the three pivots is 
respectable. Representative results are shown in Table III. 
Standard deviations of mean results are: 0.015 for u*, 0.03 for 
D*, and 0.04 for w*. 

(9) (a) Albery, W. J.; Gelles, J. S. J. Chem. Soc, Faraday Trans. 1 1982, 
78, 1569. (b) In FAJ's experiments, buffer concentrations ranged up to 0.5 
M at a constant total ionic strength (KCl) of 1.0 M. One cannot safely 
increase the buffer concentration and thus increase the relative importance 
of the third-order term because specific medium effects then seriously perturb 
the kinetic analysis, even at constant ionic strength. Hand, E. S.; Jencks, W. 
P. J. Am. Chem. Soc. 1975, 97, 6221. 

R' in 
acid (pAT,) 

R in alcohol (pKa) 
CH3 (16.0) ClCH2 (14.3) CF3 (12.4) 

H (4.7) 0.40, 0.88, 0.32 0.44, 0.80, 0.36 0.47, 0.73, 0.40 
CH3O (3.4) 0.40, 0.84, 0.32 0.43, 0.77, 0.36 0.47, 0.69, 0.40 
CN (2.2) 0.39,0.81,0.33 0.43,0.74,0.37 0.46,0.66,0.41 
" Mean values for three pivots. Standard deviations of the mean are 

0.015 for M*, 0.03 for v\ and 0.04 for w*. 

Table IV lists mean results for a representative array of sub-
stituents. Although the variability of (u*,v*,w*) for the acid-
catalyzed reaction is much less than that of (u*,v*) for the 
base-catalyzed reaction (part 1, Table III),1 the tabulated changes 
are significant. All three progress variables depend noticeably 
on the pKs of the alcohol; the directions of change agree with 
expectation. The progress of C - O bond formation (v*) is also 
quite sensitive to changes in the pKa of the acid catalyst, while 
u* and w* are comparatively insensitive. Throughout Table IV, 
v* is well ahead of u* and w*; that is, C - O bond formation at 
the transition state is well ahead of the proton transfers. 

Critique of Theory. Point of Maximum Disparity. It is en­
couraging that reaction mechanisms can be identified so decisively 
and consistently by the present methods. The validity of the results 
depends, of course, on the validity of the basic theory. In this 
and the following section I shall consider two of the physical 
assumptions. 

One of the assumptions is to use the relatively simple eq 10, 
which contains no cross terms of progress variables, rather than 
the more general quadric eq 15. (The subscripts indicating the 
pivot variable have been omitted.) When two progress variables 
are sufficient, eq 15 reduces to the previously discussed2 eq 16. 

G = c + 4yx(\ - x) + AG0X - 4 ^ ( 1 - y) + AG'y -
4n's(l -s) + AG"s (10) 

G = c + 4-^(1 - x) + AG0X - 4W'(1 - y) + AG'y + 
fix - 1A)Cy - V2) - V J ( I - s) + AG"s + g(x - y2)(s - >/2) + 

h(y - V1Ks - y2) (15) 

G = c+ 4yx(\ - x) + AG0X - 4ny(\ - y) + AG'y + 

f(* - y2)(y - V2) (16) 
The cross term in (16) vanishes when the reaction series may 
include identity reactions,2 for reasons of symmetry. However, 
many reaction series (including addition reactions to a carbonyl 
group) have transition states that are inherently unsymmetrical, 
and symmetry arguments cannot be applied. Since even for such 
reactions the cross term does not seem to be needed, I wish to 
derive an alternative, symmetry-independent condition for the 
absence of cross terms. 

Using eq 16, let us consider the slope of the reaction coordinate 
z at the transition state. The reaction coordinate is specified when 
either the y coordinate yz is known as a function of x, or when 
xz is known as a function of y. The derivative, dyz/dx, denotes 
the slope of the reaction coordinate with respect to the x axis. 

Jencks and Jencks10 have described an elegant method for 
obtaining dyz/dx at the transition state (TS) on free-energy 
surfaces of the general form of eq 16. As expected, (dyz/dx)TS 

is a function of/ Furthermore, when/= 0, (dy./dx)-^ = 0. That 
is to say, when /= 0 the reaction coordinate runs parallel to the 
x axis at the transition state and, more important, yz goes through 
an extremum. (The possibility that yz as a function of x has an 
inflection point at the transition state may be ruled out because 
the free-energy surface is quadratic.) An extremum in yz implies 
that the disparity of progress of the reaction events (v - u) attains 

(10) Jencks, D. A.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 7948. 
Ay1IiX was calculated from the slopes of the level lines passing through the 
free-energy point of the transition state. See eq 15 and 16 of ref 10. 
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its maximum magnitude at the transition state. Thus, in cases 
with two progress variables, omitting the pairwise cross term is 
equivalent to requiring that disparity of progress reaches a 
maximum at the transition state. 

I believe this is a physically plausible constraint. The freedom 
of two reaction events to progress with disparity lowers the free 
energy below what it otherwise would be.2 This lowering, and 
the disparity which causes it, may well be greatest at the point 
of highest free energy, the transition state. 

In case of eq 15, on applying the method of Jencks and Jencks10 

one finds: ( a ) / = 0 implies that (dy2/dx)sTS = 0; (b) g = 0 implies 
that (dsz/dx)yjs = 0. Together these conditions constrain the 
reaction coordinate from reagents to products to run parallel to 
the x axis at the transition state. The further condition that h 
= 0 additionally constrains the reaction coordinate for the disparity 
reaction along y, [1Z2A

1/2] ~~ ['/2.1.V2]. t0 r u n parallel to the 
y axis at the transition state. 

Constancy of Intrinsic Parameters. The present theory allows 
for progress of the concerted reaction events to vary with the 
individual reaction but treats the intrinsic parameters (7, n, /"') 
as constants of the reaction family. This introduces error if these 
parameters, in fact, vary with the reaction, especially when the 
variable parameter is 7. 

The intrinsic parameters remain constant by definition if the 
substituents are introduced in the molecule at sites that are well 
removed and electronically insulated from the reaction zone. 
According to Thornton's model," the substituent effects may then 
be treated as linear perturbations of an otherwise unchanged 
free-energy surface whose parameters (7, ^, jt') are constants of 
the reaction family. Since this is the model actually used, sub­
stituents were chosen accordingly. All substituents included in 
the present study are external to the reaction zone and separated 
from the nearest reaction site by at least one CH2 group. 

Real substituents that cause measurable effects on AG* do not 
conform rigorously to the idealized model. It is therefore of 
interest to consider the sensitivity of y to likely interactions. In 
particular, one would like to define the constraints that must be 
imposed in order for y to remain constant. 

In a recent series of papers on displacement reactions at a 
carbon atom, Shaik and Pross12 described an interaction mech­
anism which, in the present terminology, causes the force constant 
of the reactant bond to vary within a reaction series. Although 
Shaik and Pross considered a specific mechanism, the possibility 
that the force constant may change is general. I wish to consider 
the effect on y and derive conditions under which the change in 
7 will be small. 

When disparity of concerted reaction events is neglected, 7 is 
equal to AG* for reactions in which AG0 = 0. Accordingly, I shall 

(11) Thornton, E. R. J. Am. Chem. Soc. 1967, 89, 2915. 
(12) Pross, A.; Shaik, S. S. Ace. Chem. Res. 1983, 16, 363. 
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Figure 5. Bond stretching at the transition state as a function of force 
constant when the intrinsic barrier y is constant. 

consider a series of identity reactions in which the force constant 
of the reactant bond is variable and inquire whether AG* can 
remain constant. The necessary condition is shown in Figure 5; 
AG* and thus 7 will remain constant if the change in the force 
constant k is accompanied by an appropriate change in the bond 
stretching (r* - re) at the transition state, expressed in (17), where 
re denotes the equilibrium bond distance of the reactant bond. 

7 = l/2k(r* - rc)
2 = constant (17) 

A classical relationship between k and re is given in (18), in which 

k = Ari" (18) 

(/•' - re)/rt = (const)re("-2>/2 (19) 

the parameter n is typically in the range 4 6.13 6.13 Substitution 
in (17) then leads to (19), which expresses the mathematical 
condition for 7 to be a constant of the reaction series. Since the 
exponent, (n - 2)/2, in (19) is in the range 1 to 2, eq 19 requires 
that the fractional bond stretching at the transition state must 
increase with the equilibrium distance of the reactant bond. This 
is a plausible possibility. It will be of interest to inquire if and 
when it can really happen. 

Registry No. NCCH2COOH, 372-09-8; ClCH2COOH, 79-11-8; 
CH3OCH2COOH, 625-45-6; ClCH2CH2COOH, 107-94-8; CH3COOH, 
64-19-7; CF3CH2OH, 75-89-8; Cl2CHCH2OH, 598-38-9; ClCH2CH2O-
H, 107-07-3; CH3OCH2CH2OH, 109-86-4; CH3CH2OH, 64-17-5; 
HCHO, 50-00-0. 

(13) Morse, P. M. Phys. Rev. 1929, 34, 57. 


